Building your Intelligent Lakehouse

by Git Kraken

Final Group Project - CSCI 103

Data Architect - Muhammad Sebuliba

Data Architect - Josh Laka

Data Engineer - Richard Kwan

Data Engineer - Kirk McGraw

Data Scientist - Jennifer Hu

Data Scientist - Hellen Momoh

BI Analyst - Kenan Touma

Coordinator - Richard Kwan

Agenda:

- Roles
- Problem Statement
- Data Architecture
- Data Engineering
- Data Science
- BI Analyst
- Insights and Business Recommendations
- Planned Technology Refinements

Business Use Case

Problem Statement - To predict seasonality and other external effects on overall sales and performance

Grocery stores struggle with forecasting sales

- Forecast is too low → Store is consistently low on stock → Poor customer satisfaction and the store misses out on sales
- Forecast is too high → Perishable goods go to waste → High cost to the business

Entity Relationship Diagram

Indexes:

Train set - id Transactions - date Stores - store_nbr

Cardinality

Stores: One-to-Many with Transactions, Train,

Test

Train: Many-to-Many with Holiday_Events and Oil

Test: Many-to-Many with Holiday_Events and Oil

Impact & Performance of Partitions

- Final model only trains on data after June 2015
- Partition: Train 1,373,084 and Validate on 26,730

Impact of partition:

- Data dated too far back can negatively impact model
 - Specifically during earthquake skewed data
- Improves model efficiency

Streaming Solutions

Purpose: To provide real-time data analytics on the evolving transactions & sales dataset

LAMBDA Architecture

KAPPA Architecture

Refined Data Flow Diagram

CI/CD Deployment Process

CI/CD Process for Deploying Code

A CI/CD (Continuous Integration / Continuous Deployment) process ensures that new changes are integrated, tested, and deployed automatically, minimizing errors and speeding up development

Area	Process	Tools Used
Code Backup	GitHub Repo, Feature Branches, Rollback via Git Commands	GitHub, GitHub Actions
Code DR	Used Databricks Repos for notebook versioning	Databricks Repos, Git
Data Backup	Delta Lake Time Travel, Cross-region Backups	Delta Lake, Azure Blob
Data Recovery	Rollback to Delta Lake snapshot	Delta Lake SELECT VERSION
Code Deployment	GitHub to Databricks CI/CD Pipeline	GitHub Actions, Jenkins

Data Engineer

Data Engineering - Ingestion

- Ingestion from disk storage into bronze tables
- Silver transformations for data cleanup, feature engineering
- Gold for BI reporting and model training
- Streaming pipeline for daily BI updates using available now trigger due to trigger once deprecation.

Data Engineer

Transformations/Feature Engineering

- Major Transformations
 - Reduced holiday data into boolean IsWorkDay
 - Carried over oil prices into the weekend so pricing is continuous
- Major Features created:
 - 7D/28D Moving Averages
 - Day of Week/Month 15/Month End
 - MoM/YoY Growth Rate
 - Promotion Lift Factor
 - Seasonal Index
 - Market Share
 - Sales Growth Rate
 - Average Store Sales Performance
 - Holiday Impact Factor
 - Oil Price Sensitivity

Data Engineer

Going Gold and Operationalizing

- → DE Gold Outputs for further joins and refinement by DS / BI
 - ♦ Train, Test
 - Store Performance, Family Performance, Product Analytics, Regional Metrics
- → Operationalizing
 - Catalog permissioning
 - Pipeline:
 - Merge updates
 - Logging, error handling and retries
 - Data validation
 - Performance metrics
 - Monitoring job runs in Databricks UI
 - Setup alerts for failures
 - Track execution metrics
 - Reviewing logs

Data Scientist

Data Processing and Modeling

- → Data processing:
 - ♦ Null, duplicates, pandas
 - ♦ Split into train, validation test
 - 19 features
- → Modeling: Light GBM Model
 - **boosting:** gbdt
 - **type:** regression with log-link
 - number of iterations: 1000
 - **♦ Model RMSE:** 179.25
- → Mlflow/Pipeline Integration
 - Mlflow for model registration, version and life cycle
 - logging parameters, datasets, metrics, and artifacts
- → Predictions
 - ♦ last 15 days of data for each family per store
 - run daily with incoming data

Data Scientist

Model Forecasts vs Actuals

Data Scientist

Model Forecasts

Sales Predictions for specific Store number and Family → follows actual sales for the most part

Improvements: Optimize feature selection, modem tuning to better predict volatile sales data

BI Dashboards - Sample SQL Queries

```
1 SELECT
2 month,
3 SUM(monthly_sales) AS total_sales
4 FROM
5 hive_metastore.cscie103finalprojectgroup1fall2024.gold_family_performance
6 WHERE
7 year < 2017
8 GROUP BY
9 month
10 ORDER BY
11 1 ASC
```

```
1 SELECT
2 family,
3 CONCAT(year, '-', month) AS monthyear,
4 SUM(total_revenue) AS monthly_revenue
5 FROM
6 hive_metastore.cscie103finalprojectgroup1fall2024.gold_product_analytics
7 GROUP BY
8 family
9 , year
10 , month
11 ORDER BY
12 family
13 , year
14 , month
```

```
WITH TopStores AS (
    store_nbr,
   SUM(total_sales) AS total_sales
   hive_metastore.cscie103finalprojectgroup1fall2024.gold_store_performance
  GROUP BY
    store nbr
  ORDER BY
   total sales DESC
  sp.store_nbr,
 CONCAT(sp.year, '-', sp.month) AS monthyear,
 SUM(sp.total_sales) AS monthly_sales
 hive_metastore.cscie103finalprojectgroup1fall2024.gold_store_performance AS sp
JOIN
  TopStores AS ts
    sp.store_nbr = ts.store_nbr
GROUP BY
  sp.store_nbr,
  sp.year,
 sp.month
ORDER BY
 sp.store_nbr,
  sp.year,
  sp.month
```


BI Dashboards - Seasonality

We notice monthly peaks every
December of every year. This is indicative of a seasonal trends where end of year / holiday season drives customers through the doors.

YoY Growth rate seems to be less affected by seasonality.
Potentially driven by decisions from upper management / overall economic standing.

BI Dashboards - External Factors

Promotions account for a major chunk of total sales.

States like Azuay and Esmeraldes are severely impacted by holidays. Preventative measures should be taken

BI Dashboards - External Factors

Frozen foods family of products sees a near 5x in sales every winter. Important to ensure inventory accounts for this surplus in sales

School supplies see an influx in purchases every August / September.

BI Dashboards - External Factors

Most states are not affected by oil sensitivity but four states are impacted to differing degrees

Insights and Business Recommendations

Insights

- 1. Product categories have seasonality
- 2. Promotions have an effect on sales
- 3. Holidays and oil prices have state-level impacts

Recommendations

- 1. Implement separate forecasting models for these area: seasonal category-level, state-level and perishable goods (include supply chain/inventory adjustments)
- 2. Coordinate promotions with forecasting models to prevent stockouts
- 3. Implement dynamic automated re-ordering systems with store-specific rules
- 4. Develop early-warning system for inventories trending to stockouts. Create contingency plans, cross-store inventory sharing and contract with backup suppliers for high-impact events

Planned Technology Refinements

1. Data:

- a. Gather additional factors to broaden insights (weather, unemployment rate, GDP trend, demographics, marketing campaigns, store characteristics)
- 2. Technology:
 - a. Analyze workload and refine infrastructure needs, z-ordering, partitioning, cluster configuration, memory, executor/worker configuration
 - b. Monitor consumption trends to optimize costing and resources
 - c. Create additional dashboards targeting additional audience
 - d. Expand to external data sources (weather, government data)
- 3. People:
 - a. Work with team members to find friction points and improve collaboration, eg. working across disparate time zones

Q&A

Thank You

References

https://www.kaggle.com/competitions/store-sales-time-series-forecasting/overview

https://www.leaplogic.io/blog/7-best-practices-to-modernize-data-architecture-on-databricks-with-leaplogic

https://www.databricks.com/blog/data-modeling-best-practices-implementation-modern-lakehouse

https://www.linkedin.com/pulse/migrating-from-traditional-databases-databricks-strategic-reddy-bgckc

Appendix

Workflow

Workflows > Jobs > CSCI E-103 Final Project Group 1 ☆ Send feedback Run now ~ Runs Tasks Job details 501837888017184 🚡 Job ID & Kwan, Richard Creator & Kwan, Richard Run as ① 中 口 中 Tags ① Add tag Data_Pipeline Description Add description 🗀 ...nal Project Group 1 - DE Data Pipeline No lineage information for this job. Lineage ① 品 Shared Assignment Cluster Learn more [2] Q 13 Git + Not configured + Add task Add Git settings **Schedules & Triggers** Task name* ① Data_Pipeline None Type* Notebook Add trigger Source* ① Workspace Compute Path* ① ...kspace/Shared/Final-Project-Group-1/Final Project Group 1 - DE Data Pipeline 🔀 🔻 🐴 Shared Assignment Cluster Cluster* ① Shared Assignment Cluster DBR 14.3 LTS ML · Spark 3.5.0 · Scala 2.12 2 Driver: m5d.large · Workers: m5d.large · 1-4 workers · On-demand and Spot · fall back to On-demand, DRP, 14.2 LTS MI (includer Anacha Spark 2.5.0.

Model Registry

```
from mlflow.tracking import MlflowClient
    import mlflow
    def list_registered_models():
        """List all registered models in the Model Registry"""
        client = MlflowClient()
        # Get all registered models
        registered_models = client.search_registered_models()
10
        for rm in registered models:
11
12
            print(f"Model: {rm.name}")
            # Get latest versions for each stage
13
            latest_versions = client.get_latest_versions(rm.name)
14
            for version in latest versions:
15
                print(f"\tVersion: {version.version}")
16
                print(f"\tStage: {version.current_stage}")
17
                print(f"\tRun ID: {version.run_id}")
18
                print(f"\tStatus: {version.status}")
19
                print(f"\tDescription: {version.description}")
20
21
22 list_registered_models()
```

Dashboard

